DeepMind 获胜的原因,澳门新普京游戏:AI/机器学习/深度学习

  • 栏目:新普京app 时间:2020-03-12 22:16
<返回列表

万门教育是一家专业从事万门人工智能培训、万门人工智能课程生发布于:2018-07-27 10:36发布人:cang0lousirey来源:万门教育编辑点击量:40061.北京万门教育科技有限公司是一家以万门人工智能培训系统、万门人工智能培训和万门人工智能课程为主要业务的公司。我们致力于提供有优质的万门ai培训机构x34aeb6n服务。北京万门教育科技有限公司成立于2014-05-19,作为一家社会责任感强的公司,万门教育将依托强大的实力,在万门售后领域内树立最具口碑的品牌形象。2.北京万门教育科技有限公司的宗旨是整合优质的万门大学教育资源,以开发和提高莘莘学子的智慧为根本,形成一种新型的万门人工智能培训系统的教学模式,进而创建中国专业的以万门人工智能课程教案为主的教育培训机构。延伸拓展产品详情:人工智能、机器学习、深度学习,三者之间的同心圆关系 理解三者之间关系的最简便方法就是将它们视觉化为一组同心圆——首先是最大的部分人工智能——然后是后来兴旺的机器学习——最后是促使当下人工智能大爆发的深度学习——在最里层。我们能做什么?这就到了「狭义人工智能(Narrow AI)」的概念。指的是能够将特殊任务处理得同人类一样好,或者更好的技术。狭义人工智能的相关案例比如有 Pinterest 上的图像分类、Facebook 中的人脸识别。这些是狭义人工智能在实践中的例子。这些技术展示了人类智能的一些方面。但是如何做到的呢?那个智能来自哪里?所以接下来看第二个同心圆,机器学习。机器学习——实现人工智能的一种方式机器学习最基础的是运用算法来分析数据、从中学习、测定或预测现实世界某些事。所以不是手动编码带有特定指令设定的软件程序来完成某个特殊任务,而是使用大量的数据和算法来「训练」机器,赋予它学习如何执行任务的能力。机器学习直接源自早期那帮人工智能群体,演化多年的算法包括了决策树学习(decision tree learning)、归纳逻辑编程(inductive logic programming)。其他的也有聚类(clustering)、强化学习(reinforcement learning)和贝叶斯网络(Bayesian networks)等。我们知道,这些早期机器学习方法都没有实现通用人工智能的最终目标,甚至没有实现狭义人工智能的一小部分目标。事实证明,多年来机器学习的最佳应用领域之一是计算机视觉,尽管它仍然需要大量的手工编码来完成工作。人们会去写一些手写分类器,像是边缘检测过滤器(edge detection filters)使得程序可以识别对象的启止位置;形状检测(shape detection)以确定它是否有八条边;一个用来识别单词「S-T-O-P」的分类器。从这些手写分类器中他们开发出能够理解图像的算法,「学习」判定它是否是一个停止标志。这很好,但还不够好。特别是有雾天气标志不完全可见的情况下,或者被树遮住了一部分。计算机视觉和图像检测直到目前都不能与人类相媲美,是因为它太过脆弱,太容易出错了。是时间和正确的学习算法改变了这一切。3.万门教育坚持与时俱进,倡导以服务为本,以诚信为本,以人为本的经营理念。公司秉承顾客至上,锐意进取的经营理念,坚持客户第一的原则为广大客户提供优质的万门大学售后服务、万门ai培训机构、万门加盟服务。欢迎来电垂询:010-82169587,或访问公司官网:www.wanmen.org

人工智能——机器诠释的人类智能

人工智能、机器学习和深度学习之间区别

文章摘要:

搞清三者关系的最简单方法,就是把它们想象成一个同心圆,其中人工智能最大。

本文由挚金资本原创编译,本文作者 Michael Copeland 曾是 WIRED 编辑,现在是硅谷知名投资机构 Andreessen Horowitz 的合伙人。


人工智能是未来。人工智能是科幻。人工智能已经深入我们的日常生活。这些话都没错,当然这要看你指的是哪种程度的人工智能。

举个例子,今年早些时候 Google DeepMind 的 AlphaGo 项目在举世瞩目的围棋比赛中一举击败了韩国选手李世石,媒体就是使用了人工智能、机器学习和深度学习这几个术语,来解释 DeepMind 获胜的原因。但是三者其实不是一回事。

搞清三者关系的最简单方法,就是把它们想象成一个同心圆,其中人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习,不过却是如今人工智能爆炸式发展的根源,处于前两者的范围之内。

澳门新普京游戏 1

【嵌牛提问】:AI、机器学习和深度学习之间的区别是什么?联系是什么?

澳门新普京游戏 2

比如你可以把一个图像切成一堆碎片并输入到神经网络的第一层中。然后第一层的单个神经元们将数据传递给第二层。第二层神经元将数据传给第三层,如此一直传到最后一层并输出最终结果。

机器学习:实现人工智能的一种方法

澳门新普京游戏 3

简单来说,机器学习就是使用算法分析数据,从中学习并做出推断或预测。因此与传统的使用特定指令集手写软件例程,实现特定任务的做法不同,我们使用大量数据和算法来“训练”机器,由此来学习如何完成任务。

机器学习的概念来自早期的人工智能研究者,已经研究出的算法包括决策树学习、归纳逻辑编程、增强学习和贝叶斯网络等。众所周知,上述任何一个算法都没有实现通用人工智能的最终目标,而且靠这些早期的机器学习方式甚至都没有实现弱人工智能。

许多年来,计算机视觉一直是机器学习最佳的领用领域之一,尽管还需要大量的手动编码才能完成任务。研究者会手动编写一些分类器(classifier),如边缘检测筛选器,帮助程序辨别物体的边界;图形检测分类器,判断物体是否有八个面;以及识别“S-T-O-P”的分类器。在这些手动编写的分类器的基础上,他们再开发用于理解图像的算法,并学习如何判断是否有停止标志。

到了这一步已经不错,但还不算惊艳。尤其是在雾天的时候,标志也不是特别清晰,或者会有树遮挡。计算机视觉和图像检测直到最近才达到人类水平也是有原因的:经不住考验,而且容易出错。

不过,时间和正确的学习算法改变了这一切。

人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。

澳门新普京游戏 4

每个神经元分配一个权重到它的输入——评估所执行的任务的准确或不准确。然后最终的输出由所有这些权重来确定。所以想想那个停止标志的例子。一个停止标志图像的特征被切碎并由神经元来「检查」——它的形状、它的消防红色彩、它的独特字母、它的交通标志尺寸以及和它的运动或由此带来的缺失。神经网络的任务是判定它是否为一个停止标志。这提出了一个「概率向量」,它真是一个基于权重的高度受训的猜测。在我们的例子中,系统可能有 86% 的把握认为图像是一个停止标志,7% 的把握认为这是一个限速标志,5% 的把握认为这是一只被卡在树上的风筝,等等——然后网络架构告诉神经网络结果的正确与否。

从低潮到繁荣

自从 1956 年计算机科学家们在达特茅斯会议(Dartmouth Conferences)上确认人工智能这个术语以来,人们就不乏关于人工智能奇思妙想,研究人员也在不遗余力地研究。在此后的几十年间,人工智能先是被捧为人类文明光明未来的钥匙,后又被当作过于自大的异想天开而抛弃。老实说,在 2012 年之前,人工智能确实处于二者之间。

但是在过去几年中,人工智能出现了爆炸式的发展,尤其是 2015 年之后。大部分原因,要归功于图形处理器(GPU)的广泛应用,使得并行处理更快、更便宜、更强大。另外,人工智能的发展还得益于几乎无限的存储空间和海量数据的出现(大数据运动):图像、文本、交易数据、地图数据,应有尽有。

下面我们来回顾一下计算机科学家如何让直到 2012 年还处在低潮的人工智能,迎来了数亿人每天都在使用的大繁荣。

五十年代,人工智能曾一度被极为看好。之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大的影响。

简单来说,机器学习就是使用算法分析数据,从中学习并做出推断或预测。因此与传统的使用特定指令集手写软件例程,实现特定任务的做法不同,我们使用大量数据和算法来“训练”机器,由此来学习如何完成任务。
机器学习的概念来自早期的人工智能研究者,已经研究出的算法包括决策树学习、归纳逻辑编程、增强学习和贝叶斯网络等。众所周知,上述任何一个算法都没有实现通用人工智能的最终目标,而且靠这些早期的机器学习方式甚至都没有实现弱人工智能。
许多年来,计算机视觉一直是机器学习最佳的领用领域之一,尽管还需要大量的手动编码才能完成任务。研究者会手动编写一些分类器(classifier),如边缘检测筛选器,帮助程序辨别物体的边界;图形检测分类器,判断物体是否有八个面;以及识别“S-T-O-P”的分类器。在这些手动编写的分类器的基础上,他们再开发用于理解图像的算法,并学习如何判断是否有停止标志。
到了这一步已经不错,但还不算惊艳。尤其是在雾天的时候,标志也不是特别清晰,或者会有树遮挡。计算机视觉和图像检测直到最近才达到人类水平也是有原因的:经不住考验,而且容易出错。
不过,时间和正确的学习算法改变了这一切。
深度学习:实现机器学习的一种技术


机器学习直接来源于早期的人工智能领域。传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。

早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。
举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。在第一层中做初步计算,然后神经元将数据传至第二层。由第二层神经元执行任务,依次类推,直到最后一层,然后输出最终的结果。
每个神经元都会给其输入指定一个权重:相对于执行的任务该神经元的正确和错误程度。最终的输出由这些权重共同决定。因此,我们再来看看上面提到的停止标志示例。一张停止标志图像的属性,被一一细分,然后被神经元“检查”:形状、颜色、字符、标志大小和是否运动。神经网络的任务是判断这是否是一个停止标志。它将给出一个“概率向量”(probability vector),这其实是基于权重做出的猜测结果。在本文的示例中,系统可能会有 86% 的把握认定图像是一个停止标志,7% 的把握认为是一个限速标志,等等。网络架构然后会告知神经网络其判断是否正确。
不过这个示例也有点超前了,因为之前大部分时间人工智能研究者们都对神经网络避之不及。神经网络的概念出现的很早,但是没有产出一点像样的“智能”。问题在于即使是最基础的神经网络也要耗费巨大的计算资源,因此当时不算是一个可行的方法。不过,以多伦多大学 Geoffrey Hinton 教授为首的一小批狂热研究者们坚持采用这种方法,最终让超级计算机能够并行执行该算法,并证明该算法的作用。当然这也是采用了 GPU 之后才实现的。
如果我们回到停止标志那个例子,很有可能神经网络受训练的影响,会经常给出错误的答案。这说明还需要不断的训练。它需要成千上万张图片,甚至数百万张图片来训练,直到神经元输入的权重调整到非常精确,几乎每次都能够给出正确答案(不管是否为雾天或雨天)。只有在这时,神经网络才算学会了什么是停止标志。Facebook 利用神经网络记住了你母亲的面孔;吴恩达 2012 年在谷歌实现了可以识别猫的神经网络。
吴恩达的创新是扩大神经网络的规模,增加网络的层数和神经元数量,然后通过系统运行大量的数据进行训练。吴恩达使用的是 1 千万个 YouTube 视频中的图像。吴恩达真正做到了深度学习中的“深度”。
如今,在某些情况下,通过深度学习训练过的机器在图像识别上表现优于人类,这包括找猫、识别血液中的癌症迹象等。谷歌的 AlphaGo 学会了围棋,并为比赛进行了大量的训练:不断的和自己比赛。
深度学习赋予了人工智能美好的未来
深度学习使得机器学习乃至人工智能整个领域出现了众多实际应用。深度学习的出现,使得任何机器协助看上去都成为可能。无人驾驶汽车,更好的预防性医疗,甚至更棒的电影推荐,都已经实现或即将实现。人工智能已经成为现实,也是我们的未来。在深度学习的帮助下,人工智能甚至可能达到我们一直有以来幻想的科幻状态。我猜,未来你会有自己的 C-3PO,甚至包括终结者。

我们能做什么?这就到了「狭义人工智能(Narrow AI)」的概念。指的是能够将特殊任务处理得同人类一样好,或者更好的技术。狭义人工智能的相关案例比如有 Pinterest 上的图像分类、Facebook 中的人脸识别。

深度学习:实现机器学习的一种技术

澳门新普京游戏 5

早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。

举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。在第一层中做初步计算,然后神经元将数据传至第二层。由第二层神经元执行任务,依次类推,直到最后一层,然后输出最终的结果。

每个神经元都会给其输入指定一个权重:相对于执行的任务该神经元的正确和错误程度。最终的输出由这些权重共同决定。因此,我们再来看看上面提到的停止标志示例。一张停止标志图像的属性,被一一细分,然后被神经元“检查”:形状、颜色、字符、标志大小和是否运动。神经网络的任务是判断这是否是一个停止标志。它将给出一个“概率向量”(probability vector),这其实是基于权重做出的猜测结果。在本文的示例中,系统可能会有 86% 的把握认定图像是一个停止标志,7% 的把握认为是一个限速标志,等等。网络架构然后会告知神经网络其判断是否正确。

不过这个示例也有点超前了,因为之前大部分时间人工智能研究者们都对神经网络避之不及。神经网络的概念出现的很早,但是没有产出一点像样的“智能”。问题在于即使是最基础的神经网络也要耗费巨大的计算资源,因此当时不算是一个可行的方法。不过,以多伦多大学 Geoffrey Hinton 教授为首的一小批狂热研究者们坚持采用这种方法,最终让超级计算机能够并行执行该算法,并证明该算法的作用。当然这也是采用了 GPU 之后才实现的。

如果我们回到停止标志那个例子,很有可能神经网络受训练的影响,会经常给出错误的答案。这说明还需要不断的训练。它需要成千上万张图片,甚至数百万张图片来训练,直到神经元输入的权重调整到非常精确,几乎每次都能够给出正确答案(不管是否为雾天或雨天)。只有在这时,神经网络才算学会了什么是停止标志。Facebook 利用神经网络记住了你母亲的面孔;吴恩达 2012 年在谷歌实现了可以识别猫的神经网络。

吴恩达的创新是扩大神经网络的规模,增加网络的层数和神经元数量,然后通过系统运行大量的数据进行训练。吴恩达使用的是 1 千万个 YouTube 视频中的图像。吴恩达真正做到了深度学习中的“深度”。

如今,在某些情况下,通过深度学习训练过的机器在图像识别上表现优于人类,这包括找猫、识别血液中的癌症迹象等。谷歌的 AlphaGo 学会了围棋,并为比赛进行了大量的训练:不断的和自己比赛。

|深度学习,给人工智能以璀璨的未来

从低潮到繁荣
自从 1956 年计算机科学家们在达特茅斯会议(Dartmouth Conferences)上确认人工智能这个术语以来,人们就不乏关于人工智能奇思妙想,研究人员也在不遗余力地研究。在此后的几十年间,人工智能先是被捧为人类文明光明未来的钥匙,后又被当作过于自大的异想天开而抛弃。老实说,在 2012 年之前,人工智能确实处于二者之间。
但是在过去几年中,人工智能出现了爆炸式的发展,尤其是 2015 年之后。大部分原因,要归功于图形处理器(GPU)的广泛应用,使得并行处理更快、更便宜、更强大。另外,人工智能的发展还得益于几乎无限的存储空间和海量数据的出现(大数据运动):图像、文本、交易数据、地图数据,应有尽有。
下面我们来回顾一下计算机科学家如何让直到 2012 年还处在低潮的人工智能,迎来了数亿人每天都在使用的大繁荣。
人工智能:机器展现的人类智能

吴恩达的突破在于从根本上使用这些神经网络 并将它们变得庞大,增加了层数和神经元的数量,然后通过系统运行大量的数据来训练它。吴恩达使用了 1000 万个 YouTube 视频的图像。他将「深度」运用在深度学习中,这就描述了这些神经网络的所有层。

人工智能:机器展现的人类智能

澳门新普京游戏 6

人工智能先驱们在达特茅斯开会时,心中的梦想是希望通过当时新兴的计算机,打造拥有相当于人类智能的复杂机器。这就是我们所说的“通用人工智能”(General AI)概念,拥有人类五感(甚至更多)、推理能力以及人类思维方式的神奇机器。在电影中我们已经看过无数这样的机器人,对人类友好的 C-3PO,以及人类的敌人终结者。通用人工智能机器至今只存在 于电影和科幻小说里,理由很简单:我们还实现不了,至少目前为止。

我们力所能及的,算是“弱人工智能”(Narrow AI):执行特定任务的水平与人类相当,甚至超越人类的技术。现实中有很多弱人工智能的例子。这些技术有人类智能的一面。但是它们是如何做到的?智能来自哪里?这就涉及到下一个同心圆:机器学习。

【嵌牛导读】:人工智能的浪潮正在席卷全球,诸多词汇时刻萦绕在我们耳边:人工智能(Artificial Intelligence)、机器学习(Machine Learning)、深度学习(Deep Learning)。不少人对这些高频词汇的含义及其背后的关系总是似懂非懂、一知半解。为了帮助大家更好地理解人工智能,这篇文章用最简单的语言解释了这些词汇的含义,理清它们之间的关系。

人工智能是未来。人工智能是科幻。人工智能已经深入我们的日常生活。这些话都没错,当然这要看你指的是哪种程度的人工智能。
举个例子,今年早些时候 Google DeepMind 的 AlphaGo 项目在举世瞩目的围棋比赛中一举击败了韩国选手李世石,媒体就是使用了人工智能、机器学习和深度学习这几个术语,来解释 DeepMind 获胜的原因。但是三者其实不是一回事。
搞清三者关系的最简单方法,就是把它们想象成一个同心圆,其中人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习,不过却是如今人工智能爆炸式发展的根源,处于前两者的范围之内。

深度学习——一种实现机器学习的技术

深度学习赋予了人工智能美好的未来

深度学习使得机器学习乃至人工智能整个领域出现了众多实际应用。深度学习的出现,使得任何机器协助看上去都成为可能。无人驾驶汽车,更好的预防性医疗,甚至更棒的电影推荐,都已经实现或即将实现。人工智能已经成为现实,也是我们的未来。在深度学习的帮助下,人工智能甚至可能达到我们一直有以来幻想的科幻状态。我猜,未来你会有自己的 C-3PO,甚至包括终结者。

DeepMind 获胜的原因,澳门新普京游戏:AI/机器学习/深度学习。查看原文链接

译者:EarlGrey

 转载自

机器学习的发展历程


这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。

查看原文链接

过去的几年里,尤其从 2015 年开始,人工智能开始爆发了。这很大程度上与 GPU 的广泛应用有关,为了使并行处理更快、更便宜、更强大。这也与近乎无限的存储能力和各类数据洪流(所有的大数据运动)——图像、文本、交易、测绘数据,只要你说得出来——一道进行。

我们仍以停止(Stop)标志牌为例。将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。

深度学习:实现机器学习的一种技术

如果我们再回到停止标志的例子,当网络正在进行调整或者「训练」时,出现大量的错误答案,这个机会是非常好的。它需要的就是训练。它需要看到成千上万,甚至数以百万计的图像,直到神经元的输入权重被精确调整,从而几乎每一次都能得到正确答案——无论有雾没雾,晴天还是雨天。在这一点上,神经网络已经教会了自己停止标志看起来会是什么样的;或者在 Facebook 例子中就是识别妈妈的脸;或者吴恩达 2012 年在谷歌所做的猫的图片。

 姓名:余玥       学号:16010188033

澳门新普京游戏 7

上一篇:执法人员在韵达公司郑州分拨中心一共查获8个假烟快递包裹,执法人员正在清点查获的香烟 下一篇:火线与零线接反,也有可能导致空调外机漏电

更多阅读

DeepMind 获胜的原因,澳门新普京游戏:

新普京app 2020-03-12
万门教育是一家专业从事万门人工智能培训、万门人工智能课程生发布于:2018-07-2710:36发布人...
查看全文

火线与零线接反,也有可能导致空调外机

新普京app 2020-03-12
想不到华盛顿变频中央空调集团减价价格,却有您意外的尼科西亚中心宣告于:2018-07-2311:02发...
查看全文

执法人员在韵达公司郑州分拨中心一共查

新普京app 2020-03-12
行使物流违法运输假烟 镇海4天搜查缴获5起公布于:2018-03-0923:41公布人:hui415271326来源:www....
查看全文

友情链接: 网站地图

Copyright © 2015-2019 http://www.chaptercattery.com. 澳门新普京app-游戏手机版软件下载有限公司 版权所有